Hemostasis and Energy Sources

Thomas S. Lendvay, M.D.
Assistant Professor
University of Washington
Overview

- Operative planning
- Laparoscopic hemostasis modalities
 - Non-energy
 - Energy
- Tips for maintaining dry field
- Bowel injury
- Future perspectives
Operative Planning

- Pre-op imaging
- R/o bleeding diathesis/Rx
- Adequate exposure
- Instrument preparedness
- Stay calm
- Bleeding and charring steal light
- For many bleeders, direct instrument pressure
 - Raise pneumo (judiciously)
- Add port, open
Non-energy Techniques

- Suture ligature
 - Pros
 - Proven effective
 - Excellent training
 - Cons
 - Time intensive
 - Technically challenging
Non-energy Techniques

- Titanium clips
 - Pros
 - Withstand highest burst pressures
 - No collateral damage
 - Cons
 - Dislodgement
 - May preclude stapler
 - Nidus for adhesions
- Plastic (locking)
 - Pros
 - As above
 - Cons
 - Application error
 - Multiple clips
 - Leave stump
 - No data on adhesions

- Vascular endo-staplers
 - Easy to use
 - Good for large vessels
 - But need big port 12 mm
 - Firing malfunction
 - $$$

- Vascular clamps
 - Bulldogs
 - Satinsky
Non-energy Techniques

- Tissue sealants
 - Gelatin matrix (FloSeal)
 - Thrombin and gelatin from bovine sources
 - Collagen crosslinked to gluteraldehyde
 - Fibrin glues (Tisseel)
 - Elements of clotting cascade
 - Fibrinogen/thrombin/Factor VIII/ Ca++
 - Extracted from human blood products
- Surgicel
 - Fibrinogen and thrombin fleece
Energy Techniques

- Monopolar
 - shears, hook, blade
 - > 85% laparoscopists

Click here to view this video

Click here to view this video
Energy Techniques

• Ultrasonic (55,000 Hz)
 • Pizoelectric transducer in hand piece
 • Denatures hydrogen bonds – coagulum
 • FDA approved for 3 mm vessels
 • Lower energy transduced
 • May lead to smaller spread
 • Thermal spread
 • continuous >> intermittent activation
 • Works as grasper well
Energy Techniques

- Emam et al. (2003)
 - After 15 sec of US
 - 1 cm away 140 C
 - Setting < than 4 less than 10 seconds
Thermal Techniques

- Bipolar Feedback (Ligasure)
 - FDA approved for vessels up to 7 mm
 - High current 4 A, low voltage < 200V
 - Denatures collagen and elastin
Energy Techniques

• Argon beam coagulation (1989)
 • Monopolar current via electrode
 • Conduction of RF energy thru ionized beam of argon gas
 • Depth 2-5mm (solid organ)
 • Pros
 • Parenchymal surfaces, diffuse bleeding
 • Minimal smoke
 • Large surface areas
 • Cons
 • Not vessels
 • Gas embolization (vent abdomen)
 • Lower flow, lower risk of embolism
 • < 4L/min for lap
 • Hand piece 1 cm from tissue (embolism)
Energy Techniques

- LASER
 - Bloodless dissection with coagulation
 - Less tissue damage
 - Depth 2 mm
Head to Head Studies

• Harold et al. (2003)
 • Ligated vessel burst pressure
 • Ultrasonic/Ligasure/Titanium clips/Plastic clips
 • Ligasure > US burst pressure for 4-7 mm
 • Clips highest burst pressure
 • Ligasure as good as clips for 4-5 mm
 • Thermal spread energy sources ~2mm

• Hruby et al. (2007)
 • Harmonic Ace (up to 5mm), Ligasure (up to 7 mm)
 • Consistent reproducible force
 • Proper coaptation of vessel which aids in coagulum
 • Too much, vessel cut too early
 • Too little, not coapted, not coagulated
 • Harmonic ACE faster X 2
Head to Head Studies

- Landman et al. (2003)
- Pig vessel burst pressure tests
 - Ligasure v. Harmonic scalpel v. Titanium clips v. Endostapler
 - Ligasure
 - Arteries up to 6 mm
 - Veins up to 12 mm
 - Ligasure not as good as clips or staples
 - 2-6mm peripheral damage
 - $$$ Ligasure and repeating clip applier similar in cost but generator $17K
 - Staples most expensive
 - Harmonic faster
Head to Head Studies

- Tulikangas et al. (2001)
- Pig bowel injury experiment
- ME v. BE v. LASER v. US
 - BE/ME at 40W, US at 3.5
 - Coagulative denaturation of collagen bundles
 - ME>>>US bowel and bladder
 - CO2 LASER no deep tissue injury
 - LASER most shallow
 - BE injury 1.5 cm away in ureter, 1 cm away in bladder
 - ME 2.3cm and 1cm
Head to Head Studies

- Diamantis et al. (2006)
 - Monopolar vs. Bipolar v. Ligasure v. Ultrasonic
 - Divide short gastrics in 16 rabbits
 - Studied coagulation sites and adjacent gastric wall
 - LS/US complete hemostasis, no complications
 - LS least adjacent thermal injury, fastest healing
 - Failure rates – ME (25%), BE(30%), LS (0%), US (6%)
 - Adhesions in ME>BE>>LS/US
 - LS/US safer and more effective

![Lesion Depth Graph](image)
Thermal Injury

- Underreported
- Reasons
 - Insulation failure
 - High voltage, cleaning wear, trocar passage
 - Instrument coupling
 - Transmit current through adjacent instrument (metal)
 - Capacitative coupling
 - Parallel current running in tissue
- Decreased field of view
 - Hard to see other than tip
- Fecal peritonitis mortality 25%
- Possible signs of stray current
 - Electrical interference on monitor
 - Reduced power at end-effector
Thermal Injury

• Bowel injury
 • 2nd most common (Vascular #1)
 • 0.2-1.2% urologic lap procedures
• Over sew serosal injuries
• Late diagnosis > 50%
• Free air after 24-48 hr
• Presentation (up to 2 weeks)
 • Low grade fever
 • Leukopenia
 • Localized trocar site pain
 • Diarrhea
Laparoscopic Immune Response

- El Hakim et al. (2004), 40 bowel injured rabbits
 - Lap/open/pneumoperitoneum/sham
- Peritoneal fluid WBCs > in surgery grps, open > lap
- Decrease in lymphocytes and monocytes in lap at 3 days
- Systemic WBCS equal
- Peritoneal IL-8 > in lap vs. pneumo but = open and lap
- Granulation tissue open > lap
- IL-8 elevated in pneumo over open sham
- Lap did not sustain local inflammatory response
 - Blunted peritoneal immune response
 - mask clinical signs /sx’s of peritonitis
Laparoscopic Immune Response

- El-Hakim et al. (2005), rabbits
 - Monocyte migration assessed
 - Monocyte apoptosis lap < open
 - Migration Lap > open
 - Lap injuries
 - Decreased priming of cellular immunity
 - Mask peritonitis
Future Perspectives

- RF anastomotic sealers
 - Bipolar fusion devices
 - Smulders et al.
 - Pigs bowel anastomoses
 - 7/8 intact POD#7
 - Normal re-epithelialization
Final Words

- Keep all metal in field of view
- Short bursts of activation
- Ligasure/Ultrasonic probably safest
- Use lowest settings
- Respect the clinical signs
References